technology definition and characteristics

5

We are all around with tech and everything which we use in our daily routine is partially tech. smartphone, watch, calculator, amplifier and many more items are example of technology. Internet is the latest form of technology and artificial intelligence is future of technology. We can’t imagine our future without technology.

So, technology is boon or sin?

This question generally have a human beings  to development of technology . Let’s discuss this:-

What is technology?

Technology is a mixture of two words tech and ology. Tech is the application of scientific knowledge to the practical aims of human life and ology  refers to study of tech.

Basically on the basis of size there are three types of technology that we are found around us:-

  1. Mechanics (10-3 metre)
  2. Micro technology (10-6  metre)
  3. Nano technology (10-9  metre)

MECHANICS

Mechanics, science concerned with the motion of bodies under the action of forces, including the special case in which a body remains at rest. Of first concern in the problem of motion are the forces that bodies exert on one another. This leads to the study of such topics as gravity, electricity, and magnetism, according to the nature of the forces involved. Given the forces, one can seek the manner in which bodies move under the action of forces; this is the subject matter of mechanics proper.

Types of mechanics :-

Mechanics may be divided into three branches: statics, which deals with forces acting on and in a body at rest; kinematics, which describes the possible motions of a body or system of bodies; and kinetics, which attempts to explain or predict the motion that will occur in a given situation.

The principles of mechanics have been applied to three general realms of phenomena:-

  1. The motions of such celestial bodies as stars, planets, and satellites can be predicted with great accuracy thousands of years before they occur. (The theory of relativity predicts some deviations from the motion according to classical, or Newtonian, mechanics; however, these are so small as to be observable only with very accurate techniques, except in problems involving all or a large portion of the detectable universe.)
  2. As the second realm, ordinary objects on Earth down to microscopic size (moving at speeds much lower than that of light) are properly described by classical mechanics without significant corrections. The engineer who designs bridges or aircraft may use the Newtonian laws of classical mechanics with confidence, even though the forces may be very complicated, and the calculations lack the beautiful simplicity of celestial mechanics .
  3. The third realm of phenomena comprises the behaviour of matter and electromagnetic radiation on the atomic and subatomic scale. Although there were some limited early successes in describing the behaviour of atoms in terms of classical mechanics, these phenomena are properly treated in quantum mechanics.
father of classical physics- Sir Isac Newton

The central concepts in classical mechanics are force, mass, and motion. Neither force nor mass is very clearly defined by Newton, and both have been the subject of much philosophical speculation since Newton. Both of them are best known by their effects. Mass is a measure of the tendency of a body to resist changes in its state of motion. Forces, on the other hand, accelerate bodies, which is to say, they change the state of motion of bodies to which they are applied. The interplay of these effects is the principal theme of classical mechanics.

Although Newton’s laws focus attention on force and mass, three other quantities take on special importance because their total amount never changes. These three quantities are energy, (linear) momentum, and angular momentum. Any one of these can be shifted from one body or system of bodies to another. In addition, energy may change form while associated with a single system, appearing as kinetic energy, the energy of motion; potential energy, the energy of position; heat, or internal energy, associated with the random motions of the atoms or molecules composing any real body; or any combination of the three. Nevertheless, the total energy, momentum, and angular momentum in the universe never changes.

MICRO TECHNOLOGY

Microtechnology deals with technology  whose features have dimensions of the order of one micrometre (one millionth of a metre, or 10−6 metre, or 1μm). It focuses on physical and chemical processes as well as the production or manipulation of structures with one-micrometre magnitude.

History of micro technology

Around 1970, scientists learned that by arraying large numbers of microscopic transistors on a single chip, microelectronic circuits could be built that dramatically improved performance, functionality, and reliability, all while reducing cost and increasing volume. This development led to the Information revolution.

More recently, scientists have learned that not only electrical devices, but also mechanical devices, may be miniaturized and batch-fabricated, promising the same benefits to the mechanical world as integrated circuit technology has given to the electrical world. While electronics now provide the ‘brains’ for today’s advanced systems and products, micro-mechanical devices can provide the sensors and actuators — the eyes and ears, hands and feet — which interface to the outside world.

Today, micromechanical devices are the key components in a wide range of products such as automobile airbags, ink-jet printers, blood pressure monitor, and projection display systems. It seems clear that in the not-too-distant future these devices will be as pervasive as electronics. The process has also become more precise, driving the dimensions of the technology down to sub-micrometer range as demonstrated in the case of advanced microelectric circuits that reached below 20 nm.

The following items have been constructed on a scale of 1 micrometre using photolithography:

  1. Electronics
  2. wires
  3. Resistors
  4. Transistors
  5. Thermionic valves
  6. diodes
  7. Sensors
  8. Capacitors
  9. Machinery
  10. Electric motors
  11. Gears
  12. Levers
  13. Bearings
  14. Hinges
  15. Fluidics
  16. Valves
  17. Channels
  18. Pumps
  19. Turbines

Nanotechnology

Artificial intelligence or robotics is the beautiful example of technology, which we used in present time and it is the future.

Nanotechnology is science, engineering, and technology conducted at the nanoscale, which is about 1 to 100 nanometers.

Nanoscience and nanotechnology are the study and application of extremely small things and can be used across all the other science fields, such as chemistry, biology, physics, materials science, and engineering.

How It Started

The ideas and concepts behind nanoscience and nanotechnology started with a talk entitled “There’s Plenty of Room at the Bottom” by physicist Richard Feynman at an American Physical Society meeting at the California Institute of Technology (CalTech) on December 29, 1959, long before the term nanotechnology was used. In his talk, Feynman described a process in which scientists would be able to manipulate and control individual atoms and molecules. Over a decade later, in his explorations of ultraprecision machining, Professor Norio Taniguchi coined the term nanotechnology. It wasn’t until 1981, with the development of the scanning tunneling microscope that could “see” individual atoms, that modern nanotechnology began.


Fundamental Concepts in Nanoscience and Nanotechnology

It’s hard to imagine just how small nanotechnology is. One nanometer is a billionth of a meter, or 10-9 of a meter. Here are a few illustrative examples:

There are 25,400,000 nanometers in an inch

A sheet of newspaper is about 100,000 nanometers thick

On a comparative scale, if a marble were a nanometer, then one meter would be the size of the Earth

Nanoscience and nanotechnology involve the ability to see and to control individual atoms and molecules. Everything on Earth is made up of atoms—the food we eat, the clothes we wear, the buildings and houses we live in, and our own bodies.

But something as small as an atom is impossible to see with the naked eye. In fact, it’s impossible to see with the microscopes typically used in a high school science classes. The microscopes needed to see things at the nanoscale were invented in the early 1980s.

Once scientists had the right tools, such as the scanning tunneling microscope (STM) and the atomic force microscope (AFM), the age of nanotechnology was born.

Although modern nanoscience and nanotechnology are quite new, nanoscale materials were used for centuries. Alternate-sized gold and silver particles created colors in the stained glass windows of medieval churches hundreds of years ago. The artists back then just didn’t know that the process they used to create these beautiful works of art actually led to changes in the composition of the materials they were working with.

Today’s scientists and engineers are finding a wide variety of ways to deliberately make materials at the nanoscale to take advantage of their enhanced properties such as higher strength, lighter weight, increased control of light spectrum, and greater chemical reactivity than their larger-scale counterparts.

5 thoughts on “technology definition and characteristics

Leave a Reply

Your email address will not be published. Required fields are marked *